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The characteristic equations for the one-dimensional non-stationary seepage equation are presented. It is shown that any exact 
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1. F O R M U L A T I O N  OF T H E  P R O B L E M  

For the non-stationary seepage equation in the one-dimensional case 

Pxx = m P  -~/(Y+ l) p t l ( k y )  (1.1) 

(m is the porosity of the medium, k is the seepage coefficient, y is the polytropic exponent, p is the 
pressure in the medium, t is the time, x is the spatial variable and differentiation with respect to the 
corresponding variable is denoted by subscripts) which, in a certain modified time scale, has the form 

P, = P2x/'l + P Px~ (1.2) 

an initial boundary-value problem has been set up with the following initial and boundary conditions 

p ( x , O )  = O, p ( O , t )  = F ( t ) ,  F(0) = 0 (1.3) 

This problem is considered below. 
Choosing the time t = t ( x , p )  as the dependent variable, we write Eq. (1.2) in the form 

2 t2tpl~l 2 2 t p -  + p( t~x t  p - 2txtxpt p + txtpp ) = 0 (1.4) 

I fx  is chosen as the dependent variable, then, for the function x = x(p, t) we obtain the equation 

2 
xtxp + xp/~l - pxpp = 0 (1.5) 

Equations (1.2), (1.4) and (1.5) have a singularity accompanying the higher derivatives and are 
characterized by a finite rate of propagation of perturbations [2]. 

Exact solutions, having a constant arbitrariness, have been obtained for such equations by different 
methods in a number of papers (see [3-7], for example) but the question remains as to why the exact 
solutions of Eqs (1.2), (1.4) and (1.5) only have a constant arbitrariness. 

A study of the characteristics of Eq. (1.1) enables us to answer this question. 

~fPrikl. Mat. Mekh. Vol. 69, No. 5, pp. 829-836, 2005. 
0021--8928/S--see front matter. �9 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.09.009 



744 L. I .  Rubina 

2. I N V E S T I G A T I O N  OF THE C H A R A C T E R I S T I C S  

In Eq. (1.4), we change to the new independent variables 

p - r  x=11 (2.1) 

It is obvious that the Jacobian of the transformation is not equal to zero. 
We now consider under what condition ~ = const is a characteristic of Eq. (1.4). 
In the new variables, Eq. (1.4) has the form 

t~ - t~(tn - ~Pxt~)2/7 + ( 9  + ~)[(t,ln - 2iPxt~n + cp2t~ - IG d~) t~  - 

- 2t~(tn - q~xt~)(tgn - q)xt~g) + ( t  n - ~Pxt~)2t~ ] = 0 
(2.2) 

We collect the coefficients of the derived derivative tgg and require that their sum should be equal 
to zero. The line ~ = const is then a characteristic [8]. We obtain 

2 2  
ffJxt~ + 2ffJxt~(t n - 9x t~)  + ( t  n - glxt~) 2 = 0 

We now write the relation which must be satisfied on the characteristic in order that Eq. (2.2) should 
have a solution. We obtain the ordinary differential equation (ODE) 

l l t~  - ~PZxl Y - ( cp + ~)~Pxx = 0 (2.3) 

which must satisfy the characteristics of Eq. (2.2). The solutions of the Eq. (2.3) depend on the parameter 
= const. 
Equation (2.3) has the singular solution 

~p(x) = + (x  ~,~D-~) +a(~) ,  a(~) = const (2.4) 

If % ,  0, then, on putting %(x) = y(cp), for the function y2(~p) = q we obtain the first-order ODE 

[(q~ + ~)/2]q~ = 1 / t ~ - q / y  

It follows from this that 

q = ~p, = u, u = + (2.5) 

Here, c(~) is an arbitrary constant. 
We now write the solution of (2.5) with separable variables, expressing the function ~p(x) in terms of 

u and obtain 

A(~) I do It/--- ~ l  (2.6) 
(i_+192)1+v/2 - x + b ( ~ ) ,  19 = ut4-- ~ 

where A(~) and b(~) are certain constants. 
If 7 = 2(n - 1), where n is an integer, then, on carrying out the integration in (2.6), we obtain [9] 

(also, see [4]) 

x = - b ( ~ ) + A ( ~ ) W  

n - I  
W = (2n -_3)!!z• + o ~ ,  (2.._.~nz1)(2n - 3)........_........_:(2n--2k+ 1) 

2 " ( n -  1)l 2 n -  1 k =~l 2k(n - l ) ( n - 2 ) . . . ( n - k ) ( 1  _+ u2) "-k 
(2.7) 

�9 l + v  
Z_ = mT~-- ~, z+ = 2arctgt; 
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If a minus (plus) sign is under the integral sign in formula (2.6), z_(z+) is chosen. 
When T = 2n - 1 [9] 

,,-1 ( _ l ) k (n_  1"~ (+ l )ko 2t~+l 
w = k_-o  + v 2 )  * § 

The plus (minus) signs in the numerator and denominator of this expression are chosen to be the same 
and correspond to the signs in formula (2.6). 

If 7 is any number, then [9] 

x = - b(~) + oF(y~2 + 1, 1/2; 3/2; - o  2) (2.8) 

Here  F(a ,  [~; v; x) is hypergeometric function. 
Expressions (2.7) and (2.8) are, in fact, solutions of Eq. (1.5) for a fixed time (see relations (2.1) and 

(2.5)). Consequently, for any t, the solution of Eq. (1.5) in the case of arbitrary ~ will have the form 

1 (7/2 + 1)(7/2 + 2). . . (7/2 + Off  
x ( p , t )  = b ( t ) +  A ( t ) B  l~ I +~ ~ ( l l 2  +i) i!  

i= I (2.9) 

B = 1 - a ( t ) p  -2Iv 

Substituting expression (2.9) into Eq. (1.5), we obtain a system of first-order ODEs for determining 
the functions a( t ) ,A( t )  and b(t), and, on solving this system, we will have the solution of Eq. (1.5) which 
depends on three arbitrary constants. 

We now consider the case when 7 = -1. In this case, Eq. (2.3) has the solution 

tp(x) = - ~ + a ( ~ ) c o s x + b ( ~ ) s i n x ,  a (~)2+b(~)2  = - l l t ~ ,  tr 

t p ( x ) = - ~ + c ( ~ ) c h x + d ( ~ ) s h x ,  c ( ~ ) 2 + d ( ~ )  2 =  llt~, t r  

It follows from this that 

p(x,  t) = r(t) + a ( t ) cosx  + b( t )s inx ,  t~ < 0 (2.10) 

p(x,  t) = f ( t )  + c ( t ) c h x + d ( t ) s h x ,  t~>O (2.11) 

Substituting expression (2.10) into Eq. (1.2), we obtain (differentiation with respect to time is denoted 
by a dot) 

f + t i c o s x + b s i n x  = - ( b c o s x - a s i n x ) 2 - ( r + h ) h ,  h = bs inx  + acosx  

This expression will be an identity if 

t = - ( a2+b2) ,  ti = - ra ,  iJ = - rb  

We shall assume (the general case) that a(t) ~ 0 and b(t) ~ O. Then, 

r 2+V = a 2 + b  2, v = const 

Further, suppose a = ~/M. Then [5] 

p(x,  t) = atg[a([~ - t)] + (Xcosx + ~tsinx)/cos[a([~ - t)], 

p(x,  t) = ath[a([~ + t)] + (Xcosx + ~ts inx) lch[a(~ + t)], 

~,2 § I.[2 ---- V > 0  

Z.z+la z = v<O 

(2.12) 

Here, a, 13 and ~. are arbitrary constants. 
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Similarly, relation (2.11) can be substituted into Eq. (1.2) to obtain a solution which depends on three 
arbitrary constants. 

If, in Eq. (1.4) we change to the variables 

x - 9 ( p )  = ~, p = n (2.13) 

then ~ = const will be a characteristic if tq = 0. 
In this case, it is necessary that the condition 

tp2plt~ + ~plT  - P~pp = 0 (2.14) 

is satisfied on the characteristic. 
Let  us put  tpp = q. Then, we shall have an equation for q and, on solving this, we obtain 

O p  l/~' 0 
q = (pp = _ l~p l /V) ,  o = const, 0 = 

~,(1 

We shall assume that 7( = k/l, where l and k are integers, k > I + 1. Then, on integrating the expression 
for q, we obtain the solution of Eq. (2.14) 

1 1 a (k-Wk+cX,0,  
(p(p) = - ~cap - ~--S--_l~p ~ ) 

a = t~ = const, b = ~l/t  abmt = c o n s t ,  c = = c o n s t ,  0 = b p  ilk 

( l -  1)/2 

l ( k - l )  1, X(O) = I n ( l - O ) +  ~ eos2xi ln( l+2Ocos~i+O2)+ 
m = k _ l _  1 

i = l  

(2.15) 

(/- i)/2 0 + cosx i 2 i -  1 
+2  ~ sin2'~iarctg sinx i , xi = g l 

i = l  

At a fixed time, the solution of Eq. (1.5) must be identical to expression (2.15), and we shall therefore 
seek a solution of  Eq. (1.5) in the form 

l 1 a ( t )  _tk-O/k + c ( t ) X ( b ( t ) p l / k )  + d ( t )  
x (p ,  t) = - ~ca(t)p - k - l b ( t )  lp (2.16) 

Substituting expression (2.16) into Eq. (1.5), we obtain 

i t = 0 ,  ~ = 0 ,  d =  1/a 

It follows from this that 

a ( t )  = a = const, c( t )  = c = const, d( t )  = t l a + t x  

But c(t)  = a( t )b( t )  ml (see relation (2.5)) and, consequently, c = ab(t)  mr, and, then, b(t)  = b = const. 
A solution of Eq. (1.5) has been obtain which depends on three arbitrary constants a, b and ct. 

We also write the singular solution of Eq. (2.14) 

Up = -t~ly =~ tp = a p - t / ( y a ) +  I], a = c o n s t ,  ~ = c o n s t  

So far it has been assumed that the characteristic ~ = const has the form of (2.1) or (2.13). In the 
characteristic variables, the solution of Eq. (1.4) depends on the single variable (t = t(~), tn = 0). In 
the general case, we can assume that ~ = ~(x ,  p ,  t) and them, after substituting the implicitly defined 
function t = f ( ~ ( x , p ,  t))  into Eq. (1.4), we obtain ( ~ t f v  ~: 1). 

2 2 2 2 2 
-- "~lp/ f ~ + ~O~p~t + ~pl~lx]" ~ -- p (u  x - 2~gp~xp~l  x + ~ll p~llxx ) = 0 (2.17) 
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It is obvious that, in this case, W(x, p, t) = a(t), where a( t )  is a function which is the inverse of the 
function t = f(w) and 1/f~ = d(t) .  

Suppose that 

a( t )  = W ( x , p ,  t) = - p +  tp(x, t) 

Then, after substituting the derivatives of the function W(x,p ,  t) into Eq. (2.17), we obtain the equation 
(Wp -- -1) 

2 
- , i ( t )  + 9,  - q~xlY - ( 9  - a(t))~px, = 0 (2.18) 

If t = const, then (2.18) is a characteristic equation. Unlike in the characteristic equations (2.3) and 
(2.14), there is a term tp t in it which, when t = const, cannot be equal to zero on the characteristic. An 
exact solution is known [3] where, when t = const, this term depends on x. Hence, (2.18) is the most 
general case of a characteristic equation. 

Equation (2.18) is a second-order ODE and has a solution which depends on two arbitrary constants: 
~p = ~p(x, b, c), b = const, c = const. Since the solution of Eq. (1.2) on the characteristic must be identical 
to the solution of Eq. (2.18), if <Pt depends on x, then the solution of Eq. (1.2) will have the form 
p = <p(x, b(t) ,  c( t ) )  - a(t) ,  and, on substituting it into Eq. (1.2), we obtain a first-order ODE for the 
functions b(t),  c(t)  and a(t).  Consequently, the exact solution of Eq. (1.2) will have an arbitrariness of 
no greater than three arbitrary constants. 

For example [3] 

p(x, t) = - (x- o021s + pls 2/6, 8 = 2(y + 2)Iy, s = 8t + l~ (2.19) 

Here c~, 13 and Ix are arbitrary constants. It can be verified that expression (2.19) satisfies Eqs (1.2) and 
(2.18). 

It follows from all that has been said above that any exact solution of Eq. (1.2) has an arbitrariness 
of no greater than three constants. 

3. A P P R O X I M A T E  S O L U T I O N  OF THE I N I T I A L - B O U N D A R Y - V A L U E  
P R O B L E M  

We will now show how expressions for the function p(x ,  t) with a constant arbitrariness can be used to 
solve initial-boundary-value problem (1.2), (1.3). 

Having an exact solution which depends on three arbitrary constants, it is possible to construct a 
solution which depends on two arbitrary functions if two constants are given as certain functions of a 
third constant. Using the example of the solution (2.19), we will show that these functions can be chosen 
such that the initial and boundary conditions will be exactly satisfied. 

According to conditions (1.3), p(0, t) = F(t) .  We fix t = v in expression (2.19) and require that the 
following equality be satisfied 

F(v) = - 0t2r -i + IX r-21~, r = 8v + 13 (3.1) 

By also requiring that the equalitypt(0, v) =/~(v) be a satisfied for the derivative with respect to t 
of the function (2.19), we obtain 

/V(V) = ~Ot2r -2 - 2Ixr  -(2/6+ I) (3.2) 

From relations (3.1) and (3.2), we find the values of ~2 and Ix i f r  ~ 0 

2 = ~'(/~r2+ 2Fr)14 ,  IX = "tr2/S(Fr+ 8F)14 (3 .3)  

Satisfying conditions (3.3) means that the curve p(0, t) = F(t )  is the envelope of the curves formed 
by the sectionsx = 0 in the surfacep = p(x ,  t) from the solution (2.19). 
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On requiring that the conditions CZv = 0 and ~tv = 0 be satisfied for cz and ~t in the expressions (3.3), 
we obtain 

L(v,[~) = /~r2+2(8+ 1 ) F r + 2 8 F  = 0; F = F(v),  r = r(v) (3.4) 

which is equivalent to the requirement thatp,(0,  v) =/~(v).  
From equality (3.4) we find that v = v(13) (ifLv r 0) and substitute it into expression (3.3). We obtain 

the required functions cz = a(13), ~t = ~t(13), and substitution of these into expression (2.19) gives the 
one-parameter family of surfaces 

p ( x ,  t )  = -- (X - -  0~(~))28 -1 + ~(13)S-2/~ (3.5) 

We require that the derivative PB be equal to zero 

P13 = 2(x - tz)txl3s -l + (x - (g)2S-2 + ~s _ 211s-2/8- 1/8 = 0 (3.6) 

Expressing 13 = 13(x, t) from this equality and substituting it into expression (3.5), we obtain a surface 
which is the envelope of the one-parameter family of surfaces (3.5). 

Although the functions (3.5) are exact solutions of Eq. (1.2), the function 

P ( x ,  t )  = p ( x ,  t, ~ ( x ,  t ) )  

will only satisfy Eq. (1.2) approximately since 

Pt = Pt + PfJ~t = Pt, P~ = Px+ P ~ x  = Px 

Pxx = Pxx + PxfJ~3x + (Pf3~x)x = Pxx + Pxf313x ~ Pxx 

(Px[~ r 0 when 13 = 13(x, t) from the equality (3.6)). 
The maximum error on substituting the approximate solution into Eq. (1.2) will be equal to PPx~13x, 

where p = p(x',  t', 13), 13 = 13(x', t'), and x' and t' are the solutions of the system of equations 

(ppxf3~3x)x = 0 (ppxf3~3x)t = 0 (3.7) 

In the wave front, where P(x, t) = O, and px~(X, t, 13(x, t) )13x(x, t) r 0% Eq. (1.2) is satisfied exactly but, 
when P(x, t) ;~ O, the error can be significant. 

In order to obtain a more exactly solution of the initial boundary-value problem, we shall assume 
that v = t in expressions (3.1) and (3.3) and that 

p ( x ,  t )  = - ( x -  a ( t ) ) 2 r ( t )  -1 + ~,( t ) ,  ~,(t)  = ~ t ( t ) r ( t )  -2/8 (3.8) 

where r(t) is an unknown function which, when t = v, can be determined from relation (3.4) in the form 

r(v) = { -  (5 + 1) i r  + [((5 + 1)~') 2 -  28FF]U2}/F ,  F = F(v)  (3.9) 

if/~ r 0 and the expression in the square brackets in (3.9) is non-negative. 

Table 1 

P 

>0 

>0 

<0 

<0 

>0 

<0 

>0 

<0 

u  

O < r , r < r * < O  

r < O , O < r * < r  

O < r < r ,  

r , < r < O  

- 2 < y < O  

r=O 

r=O 

r<r*  <O,O<r ,  < r  

r < r ,  <O,O<r* <r 

u < -2 

r * < r < O  

O < r < r *  

r < O , O < r ,  <r  

O < r , r < r , < O  
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We shall seek the contour  lines of  the function p(x ,  t). From relation (3.8), we find a funct ion 
x = x( t )  such t h a t p ( x ( t ) ,  t) = F(v)  and obtain 

x ( t )  = Or(t) _+ [(~,(t) - F ( v ) ) r ( t ) ]  1/2 (3.10) 

We next substitute expression (3.8) into Eq. (1.2) and then substitute expression (3.10) into the 
resulting relation. We obtain an O D E  for determining the function r = r(t) on the contour  line 
p(x ( t ) ,  t) = F(v)  of  the form 

i- = r(gl /z  - z ) ( F r  + 2F)  + 8(8 - 2 ) ~ ( F -  F (v ) )  

( 8 -  2 ) x ( F -  F ( v ) )  - 2(g ltz - Z) (/er + F)  

g = ( ~ . - F ( v ) ) ,  X = r-l/2a 

(3.11) 

We determine the initial value r = r(v) f rom equality (3.9). In Eq. (3.11), where no argument  is indicated 
in the case of  the functions and derivatives, the a rgument  is unders tood  to be t. 

Af ter  finding the solution of  Eq. (3.11) for  t > v, we substitute the value ofr ( t )  obta ined  into equality 
(3.1) and determine the value ofx  = x(t)  such tha tp(x( t ) ,  t) = F(v). When  v = 0, this value will correspond 
to the per turbat ion front  which separates the domain o f  quiescence f rom the moving medium. 

The  necessary and sufficient conditions for  the existence of  a true per turbat ion front (3.10) are 
presented in Table 1, where 

r .  = -2F / I~ ,  r* = - S F I F  ( F  = F ( t ) )  

In order  that the condition x(0) = 0 be satisfied, the relation sign c~ = -sign(gr) 1/2 must also be satisfied. 
Hence,  Eq. (1.2) will be exactly satisfied on any contour  line. 

Remark. If the value of r(v) which satisfies relation (3.9) is such that 

~l(v) = r ( v ) - 2 8 v  = const 

then, in the case of the given boundary conditions, expression (3.5) is an exact solution of Eq. (1.2) since ct = const 
and ~t = const. 

Examples. 1. Suppose Y = -1 and F(t) = -tg(t/2). Substituting the functions corresponding to the specified boundary 
conditions into relation (3.9), we obtain that 13(v) ~ const and, hence, to construct the perturbation frontx = x(t), 
we solve Eq. (3.11) and substitute the resulting values of the function r(t) into equality (3.10). An exact solution 
[51 

p(x,  t) = c tg t -  cosx/s int  

is known for the boundary conditions being considered. 
The perturbation front in this case, if 0 < t < ~, x > 0, has the form x = t. The approximate perturbation front 

differs from the exact perturbation front by less than 3% when t _< 0.85 and by less than 1% when t _< 0.5. 
2. Suppose the boundary conditions F(t) = (1 - e2~)/2 when Y = -2. Substituting the corresponding values into 

equality (3.9) and choosing the minus sign in front of the root in order to satisfy condition r ~ 0, we obtain 
13(v) = -1 = const. 

It was pointed out in the remark that, in the case of the given boundary conditions (13 = const) it is possible to 
obtain an exact solution of the initial boundary-value problem by putting v = t. From expression (3.3), we find 
that 

ot 2 = 1/2, I,t~ -2t~ = --e2t/2 

Substituting the values which have been found into relation (3.5), we obtain the exact solution for the given 
boundary conditions 

p(x , t )  = (x+ l/,,[2)Z-e2t/2 

3. We now consider the solutions of problem (1.2), (1.3) when F(t) = at, a = const. If the values o fyand  a have 
the same signs, then, when 13 = ~o, we obtain the exact solution of this problem 

p(x,  t) = F(t)  :r x(~//~') It2 (3.12) 
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If 7 and a have opposite signs, then the function (3.12) is complex-valued. In this case, we make use of  relations 
(3.3) and (3.4) in order  to obtain a solution. Let  us assume, for example, that 3' = -1,  a = c 2. Then 

6 = 0, 0t = 0, I.t = c2/2 

The exact solution in the case of  the specified boundary conditions has the form 

p(x ,  t) = x21(2t) + c2t 

I wish  to  t h a n k  S. S. T i t o v  fo r  use fu l  c o m m e n t s .  

Th i s  r e s e a r c h  was  s u p p o r t e d  f inancia l ly  by t h e  R u s s i a n  F o u n d a t i o n  fo r  Bas ic  R e s e a r c h  (00-01-0037) .  
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